Cylindrical and Toroidal Parameterizations Without Vertex Seams

نویسنده

  • Marco Tarini
چکیده

A simple rendering method is presented to avoid vertex seams in cylindrical and toroidal uv-mappings used for texture mapping (a vertex seam is a vertex duplication of a polygonal mesh with different texture coordinates assigned to the two geometrically coinciding copies). As a result, the method leads for simpler, leaner, replication-free data structures. Is also allows for an higher degree of proceduralism in generation of texture coordinates. The method is general, trivial to implement (exhaustive pseudocode is provided), very cheap on resources (with a virtually null impact on performance) and leverages only basic mechanisms widely available in most GPU implementations. An opensource implementation is made available.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On list vertex 2-arboricity of toroidal graphs without cycles of specific length

The vertex arboricity $rho(G)$ of a graph $G$ is the minimum number of subsets into which the vertex set $V(G)$ can be partitioned so that each subset induces an acyclic graph‎. ‎A graph $G$ is called list vertex $k$-arborable if for any set $L(v)$ of cardinality at least $k$ at each vertex $v$ of $G$‎, ‎one can choose a color for each $v$ from its list $L(v)$ so that the subgraph induced by ev...

متن کامل

Many-to-many two-disjoint path covers in cylindrical and toroidal grids

A many-to-many k-disjoint path cover of a graph joining two disjoint vertex sets S and T of equal size k is a set of k vertex-disjoint paths between S and T that altogether cover every vertex of the graph. The many-to-many k-disjoint path cover is classified as paired if each source in S is further required to be paired with a specific sink in T , or unpaired otherwise. In this paper, we first ...

متن کامل

Asymptotic Energy of Lattices

Abstract. The energy of a simple graph G arising in chemical physics, denoted by E(G), is defined as the sum of the absolute values of eigenvalues of G. As the dimer problem and spanning trees problem in statistical physics, in this paper we propose the energy per vertex problem for lattice systems. In general for a type of lattices in statistical physics, to compute the entropy constant with t...

متن کامل

Vertex arboricity of toroidal graphs with a forbidden cycle

The vertex arboricity a(G) of a graph G is the minimum k such that V (G) can be partitioned into k sets where each set induces a forest. For a planar graph G, it is known that a(G) ≤ 3. In two recent papers, it was proved that planar graphs without k-cycles for some k ∈ {3, 4, 5, 6, 7} have vertex arboricity at most 2. For a toroidal graph G, it is known that a(G) ≤ 4. Let us consider the follo...

متن کامل

A Note on Vertex Arboricity of Toroidal Graphs without 7-Cycles

The vertex arboricity ρ(G) of a graph G is the minimum number of subsets into which the vertex set V (G) can be partitioned so that each subset induces an acyclic graph. In this paper, it is shown that if G is a toroidal graph without 7-cycles, moreover, G contains no triangular and adjacent 4-cycles, then ρ(G) ≤ 2. Mathematics Subject Classification: Primary: 05C15; Secondary: 05C70

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Graphics Tools

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2012